The Peng Liu Research Group is currently accepting new graduate students. Apply here.
Computational Organic Chemistry
The Liu group use computational tools to study organic and organometallic reactions. We study how reactions occur, factors controlling rates and selectivity, and provide theoretical insights to help our experimental collaborators to develop improved catalysts and reagents.
Reactivity and Selectivity Rules in Organic and Organometallic Reactions
We are developing computational models to quantitatively describe the origins of reactivity and selectivity in organocatalytic and transition metal-catalyzed reactions. We perform quantum mechanical calculations to explore the reaction mechanism, followed by thorough analysis on various stereoelectronic effects to predict how changes of the catalyst structure, substituents, and solvent affect rate and selectivity. We use quantitative energy decomposition methods to dissect the key interactions in the transition state and provide chemically meaningful interpretation to the computed reactivity and selectivity.
We apply these computational studies to a broad range of organic and organometallic reactions, such as C–H and C–C bond activations, coupling reactions, olefin metathesis, and polymerization reactions.
Catalyst Screening and Prediction
Successful computational predictions of new catalyst for organic and organometallic reactions are still rare. To transform computations from a tool of explaining after-facts to an efficient approach to predict and guide new discoveries, it is eminent to develop rapid screening technology to facilitate the discovery of new catalysts. We are developing a multi-scale computational screening protocol which could efficiently rank the catalysts based on ligand-substrate interaction energies in the transition state.
Applications of Computational Chemistry in Understanding Organic Chemistry
We are collaborating with experimental groups at Pitt and many other institutions to solve problems in organic chemistry using computational methods and programs. Students in our group are actively involved in efficient communication and close collaboration with experimental groups in various areas of chemistry. Our goal is to establish the most effective strategy to use modern computational methods and hardware to help address the grand challenges in synthetic chemistry.
- Chancellor's Award for Postdoctoral Research (2012)
- MBI Postdoctoral Award for Research Excellence (2012)
- Saul and Sylvia Winstein Award (2010)
- Majeti-Alapati Fellowship for Research in Organic Chemistry (2009)
“A catalytic process enables efficient and programmable access to precisely altered indole alkaloid scaffolds,” Huang, Y.; Li, X.; Mai, B. K.; Tonogai, E. J.; Smith, A. J.; Hergenrother, P. J.; Liu, P.; Hoveyda, A. H. Nat. Chem. 2024, 16, 1003–1014.
“A database of steric and electronic properties of heteroaryl substituents,” Alturaifi, T.M., Scofield, G.E., Wang, S. and Liu, P. Scientific Data. 2025 12, 1, p.1319. DOI: 10.1038/s41597-025-05198-z
“De novo design of porphyrin-containing proteins as efficient and stereoselective catalysts,” Hou, K.; Huang, W.; Qi, M.; Tugwell, T. H.; Alturaifi, T. M.; Chen, Y.; Zhang, X.; Lu, L.; Mann, S. I.; Liu, P.*; Yang, Y.*; DeGrado, W. F.* Science, 2025, 388, 665–670. DOI: 10.1126/science.adt7268
“Hexafluoroisopropanol Solvent Effects on Enantioselectivity of Dirhodium Tetracarboxylate-Catalyzed Cyclopropanation,” Alturaifi, T. M.; Shimabukuro, K.; Sharland, J. C.; Mai, B. K.; Weingarten, E. A.; Madhusudhanan, M. C.; Musaev, D. G.*; Liu, P.*; Davies, H. M. L.*: J. Am. Chem. Soc. 2025, 147, 14694–14704. DOI: 10.1021/jacs.5c03007
“Photoinduced, Copper-Catalyzed Deracemization of Alkyl Halides,” Zhong, F.; Li, R.; Mai, B. K.; Liu, P.*; Fu, G. C.*: Nature, 2025, 640, 107–113. DOI: 10.1038/s41586-025-08784-8
“Stereospecific Alkenylidene Homologation of Organoboronates by SNV Reaction,” Chen, M.; Knox, C. D.; Madhusudhanan, M. C.; Tugwell, T. H.; Liu, C.; Liu, P.; Dong, G. Nature, 2024, 631, 328–334. DOI: 10.1038/s41586-024-07579-7
“Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling,” Wang, T.-C.; Mai, B. K.; Zhang, Z.; Bo, Z.; Li, J.; Liu, P.; Yang, Y. Nature, 2024, 629, 98–104. DOI: 10.1038/s41586-024-07284-5
“Catalytic Prenyl Conjugate Additions for Synthesis of Enantiomerically Enriched PPAPs,” Ng, S.; Howshall, C.; Ho, T. N.; Mai, B. K.; Zhou, Y.; Qin, C.; Tee, K. Z.; Liu, P.; Romiti, F.; Hoveyda, A. H. Science, 2024, 386(6718), pp.167-175. DOI: 10.1126/science.adr8612
“Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity,” Fu, Y.; Chen, H.; Fu, W.; Garcia-Borràs, M.; Yang, Y.; Liu, P. J. Am. Chem. Soc. 2022, 144, 13344–13355. DOI: 10.1021/jacs.2c04937
“C–N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp3)–H Amination: A Combined Computational and Experimental Investigation,” Mai, B. K.; Neris, N. M.; Yang, Y.; Liu, P. J. Am. Chem. Soc. 2022, 144, 11215–11225. DOI: 10.1021/jacs.2c02283
“Origins of Catalyst-Controlled Selectivity in Ag-Catalyzed Regiodivergent C–H Amination,” Fu, Y.; Zerull, E. E.; Schomaker, J. M.; Liu, P.
J. Am. Chem. Soc. 2022, 144, 2735–2746. DOI: 10.1021/jacs.1c12111
“Stereodivergent Atom-Transfer Radical Cyclization by Engineered cytochromes P450,” Zhou, Q.; Chin, M.; Fu, Y.; Liu, P.; Yang, Y.
Science 2021, 374, 1612–1616. DOI: 10.1126/science.abk1603
“Boron Insertion into Alkyl Ether Bonds via Zinc/Nickel Tandem Catalysis,” Lyu, H.; Kevlishvili, I.;Yu, X.; Liu, P.; Dong, G.
Science, 2021, 372, 175–182. DOI: 10.1126/science.abg5526
“Ligand Conformational Flexibility Enables Enantioselective Tertiary C−B Bond Formation in the Phosphonate-Directed Catalytic Asymmetric Alkene Hydroboration,” Shao, H.; Chakrabarty, S.; Qi, X.; Takacs, J. M.; Liu, P. J. Am. Chem. Soc., 2021, 143, 4801–4808. DOI: 10.1021/jacs.1c01303
“Ab Initio Molecular Dynamics Simulations of the SN1/SN2 Mechanistic Continuum in Glycosylation Reactions,” Fu, Y.; Bernasconi, L.; Liu, P. J. Am. Chem. Soc., 2021, 143, 1577–1589. DOI: 10.1021/jacs.0c12096
“Compatibility Score for Rational Electrophile Selection in Pd/NBE Cooperative Catalysis,” Qi, X.; Wang, J.; Dong, Z.; Dong, G.; Liu, P.
Chem., 2020, 6, 2810–2825. DOI: 10.1016/j.chempr.2020.09.004
“Energy Decomposition Analyses Reveal the Origins of Catalyst and Nucleophile Effects on Regioselectivity in Nucleopalladation of Alkenes,” Qi, X.; Kohler, D. G.; Hull, K. L.; Liu, P. J. Am. Chem. Soc., 2019, 141, 11892–11904. DOI: 10.1021/jacs.9b02893
“Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP),” Fang, C.; Fantin, M.; Pan, X.; de Fiebre, K.; Coote, M. L.; Matyjaszewski. K.; Liu, P. J. Am. Chem. Soc., 2019, 141, 7486–7497. DOI: 10.1021/jacs.9b02158
“Deacylative Transformations of Ketones via Aromatization-Promoted C−C Bond Activation,” Qi, X.; Zheng, P.; Berti, C. C.; Liu, P.; Dong, G. Nature, 2019, 567, 373–378. DOI: 10.1038/s41586-019-0926-8
“Predictive Model for Oxidative C−H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ),” Morales-Rivera, C. A.; Floreancig, P.; Liu, P. J. Am. Chem. Soc., 2017, 139, 17935–17944. DOI: 10.1021/jacs.7b08902
“Ligand-Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins,” Lu, G.; Yang Y.; Liu, R. Y.; Fang, C.; Lambrecht, D. S.; Buchwald, S. L.; Liu, P. J. Am. Chem. Soc., 2017, 139, 16548–16555. DOI: 10.1021/jacs.7b07373
“Computational Study of Ni-Catalyzed C−H Functionalization: Factors that Control the Competition of Oxidative Addition and Radical Pathways,” Omer, H. M.; Liu, P. J. Am. Chem. Soc., 2017, 139, 9909–9920. DOI: 10.1021/jacs.7b03548
“Catalytic Carbon–Carbon Bond Activation of Cyclopentanones,” Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature, 2016, 539, 546–550. DOI: 10.1038/nature19849
“Copper-Catalyzed Asymmetric Addition of Olefin-Derived Nucleophiles to Ketones,” Yang, Y.; Perry, I. B.; Lu, G.; Liu, P.; Buchwald, S. L.
Science, 2016, 353, 144–150. DOI: 10.1126/science.aaf7720
“Computational Study of Rh-Catalyzed Carboacylation of Olefins: Ligand-Promoted Rhodacycle Isomerization Enables Regioselective C–C Bond Functionalization of Benzocyclobutenones,” Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P.
J. Am. Chem. Soc., 2015, 137, 8274–8283. DOI: 10.1021/jacs.5b04691