Peng Liu

The Peng Liu Research Group is currently accepting new graduate students. Apply here.


Computational Organic Chemistry

The Liu group use computational tools to study organic and organometallic reactions. We study how reactions occur, factors controlling rates and selectivity, and provide theoretical insights to help our experimental collaborators to develop improved catalysts and reagents.

Reactivity and Selectivity Rules in Organic and Organometallic Reactions

We are developing computational models to quantitatively describe the origins of reactivity and selectivity in organocatalytic and transition metal-catalyzed reactions. We perform quantum mechanical calculations to explore the reaction mechanism, followed by thorough analysis on various stereoelectronic effects to predict how changes of the catalyst structure, substituents, and solvent affect rate and selectivity. We use quantitative energy decomposition methods to dissect the key interactions in the transition state and provide chemically meaningful interpretation to the computed reactivity and selectivity.

We apply these computational studies to a broad range of organic and organometallic reactions, such as C–H and C–C bond activations, coupling reactions, olefin metathesis, and polymerization reactions.

Catalyst Screening and Prediction

Successful computational predictions of new catalyst for organic and organometallic reactions are still rare. To transform computations from a tool of explaining after-facts to an efficient approach to predict and guide new discoveries, it is eminent to develop rapid screening technology to facilitate the discovery of new catalysts. We are developing a multi-scale computational screening protocol which could efficiently rank the catalysts based on ligand-substrate interaction energies in the transition state.

Applications of Computational Chemistry in Understanding Organic Chemistry

We are collaborating with experimental groups at Pitt and many other institutions to solve problems in organic chemistry using computational methods and programs. Students in our group are actively involved in efficient communication and close collaboration with experimental groups in various areas of chemistry. Our goal is to establish the most effective strategy to use modern computational methods and hardware to help address the grand challenges in synthetic chemistry.

    Awards
  • Chancellor's Award for Postdoctoral Research (2012)
  • MBI Postdoctoral Award for Research Excellence (2012)
  • Saul and Sylvia Winstein Award (2010)
  • Majeti-Alapati Fellowship for Research in Organic Chemistry (2009)
Recent Publications

“A catalytic process enables efficient and programmable access to precisely altered indole alkaloid scaffolds,” Huang, Y.; Li, X.; Mai, B. K.; Tonogai, E. J.; Smith, A. J.; Hergenrother, P. J.; Liu, P.; Hoveyda, A. H. Nat. Chem. 2024, 16, 1003–1014.

A database of steric and electronic properties of heteroaryl substituents,” Alturaifi, T.M., Scofield, G.E., Wang, S. and Liu, P. Scientific Data2025 12, 1, p.1319. DOI: 10.1038/s41597-025-05198-z

De novo design of porphyrin-containing proteins as efficient and stereoselective catalysts,” Hou, K.; Huang, W.; Qi, M.; Tugwell, T. H.; Alturaifi, T. M.; Chen, Y.; Zhang, X.; Lu, L.; Mann, S. I.; Liu, P.*; Yang, Y.*; DeGrado, W. F.* Science, 2025, 388, 665–670. DOI: 10.1126/science.adt7268

Hexafluoroisopropanol Solvent Effects on Enantioselectivity of Dirhodium Tetracarboxylate-Catalyzed Cyclopropanation,” Alturaifi, T. M.; Shimabukuro, K.; Sharland, J. C.; Mai, B. K.; Weingarten, E. A.; Madhusudhanan, M. C.; Musaev, D. G.*; Liu, P.*; Davies, H. M. L.*: J. Am. Chem. Soc. 2025, 147, 14694–14704. DOI: 10.1021/jacs.5c03007

Photoinduced, Copper-Catalyzed Deracemization of Alkyl Halides,” Zhong, F.; Li, R.; Mai, B. K.; Liu, P.*; Fu, G. C.*: Nature, 2025, 640, 107–113. DOI: 10.1038/s41586-025-08784-8

Stereospecific Alkenylidene Homologation of Organoboronates by SNV Reaction,” Chen, M.; Knox, C. D.; Madhusudhanan, M. C.; Tugwell, T. H.; Liu, C.; Liu, P.; Dong, G. Nature, 2024, 631, 328–334. DOI: 10.1038/s41586-024-07579-7

Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling,” Wang, T.-C.; Mai, B. K.; Zhang, Z.; Bo, Z.; Li, J.; Liu, P.; Yang, Y. Nature, 2024, 629, 98–104. DOI: 10.1038/s41586-024-07284-5

Catalytic Prenyl Conjugate Additions for Synthesis of Enantiomerically Enriched PPAPs,” Ng, S.; Howshall, C.; Ho, T. N.; Mai, B. K.; Zhou, Y.; Qin, C.; Tee, K. Z.; Liu, P.; Romiti, F.; Hoveyda, A. H. Science, 2024, 386(6718), pp.167-175. DOI: 10.1126/science.adr8612

Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity,” Fu, Y.; Chen, H.; Fu, W.; Garcia-Borràs, M.; Yang, Y.; Liu, P. J. Am. Chem. Soc. 2022, 144, 13344–13355. DOI: 10.1021/jacs.2c04937

C–N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp3)–H Amination: A Combined Computational and Experimental Investigation,” Mai, B. K.; Neris, N. M.; Yang, Y.; Liu, P. J. Am. Chem. Soc. 2022, 144, 11215–11225. DOI: 10.1021/jacs.2c02283

Origins of Catalyst-Controlled Selectivity in Ag-Catalyzed Regiodivergent C–H Amination,” Fu, Y.; Zerull, E. E.; Schomaker, J. M.; Liu, P.
J. Am. Chem. Soc. 2022, 144, 2735–2746. DOI: 10.1021/jacs.1c12111

Stereodivergent Atom-Transfer Radical Cyclization by Engineered cytochromes P450,” Zhou, Q.; Chin, M.; Fu, Y.; Liu, P.; Yang, Y.
Science 2021, 374, 1612–1616. DOI: 10.1126/science.abk1603

Boron Insertion into Alkyl Ether Bonds via Zinc/Nickel Tandem Catalysis,” Lyu, H.; Kevlishvili, I.;Yu, X.; Liu, P.; Dong, G.
Science, 2021, 372, 175–182. DOI: 10.1126/science.abg5526

Ligand Conformational Flexibility Enables Enantioselective Tertiary C−B Bond Formation in the Phosphonate-Directed Catalytic Asymmetric Alkene Hydroboration,” Shao, H.; Chakrabarty, S.; Qi, X.; Takacs, J. M.; Liu, P. J. Am. Chem. Soc., 2021, 143, 4801–4808. DOI: 10.1021/jacs.1c01303

Ab Initio Molecular Dynamics Simulations of the SN1/SN2 Mechanistic Continuum in Glycosylation Reactions,” Fu, Y.; Bernasconi, L.; Liu, P. J. Am. Chem. Soc., 2021, 143, 1577–1589. DOI: 10.1021/jacs.0c12096

Compatibility Score for Rational Electrophile Selection in Pd/NBE Cooperative Catalysis,” Qi, X.; Wang, J.; Dong, Z.; Dong, G.; Liu, P.
Chem., 2020, 6, 2810–2825. DOI: 10.1016/j.chempr.2020.09.004

Energy Decomposition Analyses Reveal the Origins of Catalyst and Nucleophile Effects on Regioselectivity in Nucleopalladation of Alkenes,” Qi, X.; Kohler, D. G.; Hull, K. L.; Liu, P. J. Am. Chem. Soc., 2019, 141, 11892–11904. DOI: 10.1021/jacs.9b02893

Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP),” Fang, C.; Fantin, M.; Pan, X.; de Fiebre, K.; Coote, M. L.; Matyjaszewski. K.; Liu, P. J. Am. Chem. Soc., 2019, 141, 7486–7497. DOI: 10.1021/jacs.9b02158

Deacylative Transformations of Ketones via Aromatization-Promoted C−C Bond Activation,” Qi, X.; Zheng, P.; Berti, C. C.; Liu, P.; Dong, G. Nature, 2019, 567, 373–378. DOI: 10.1038/s41586-019-0926-8

Predictive Model for Oxidative C−H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ),” Morales-Rivera, C. A.; Floreancig, P.; Liu, P. J. Am. Chem. Soc., 2017, 139, 17935–17944. DOI: 10.1021/jacs.7b08902

Ligand-Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins,” Lu, G.; Yang Y.; Liu, R. Y.; Fang, C.; Lambrecht, D. S.; Buchwald, S. L.; Liu, P. J. Am. Chem. Soc., 2017, 139, 16548–16555. DOI: 10.1021/jacs.7b07373

Computational Study of Ni-Catalyzed C−H Functionalization: Factors that Control the Competition of Oxidative Addition and Radical Pathways,” Omer, H. M.; Liu, P. J. Am. Chem. Soc., 2017, 139, 9909–9920. DOI: 10.1021/jacs.7b03548

Catalytic Carbon–Carbon Bond Activation of Cyclopentanones,” Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature, 2016, 539, 546–550. DOI: 10.1038/nature19849

Copper-Catalyzed Asymmetric Addition of Olefin-Derived Nucleophiles to Ketones,” Yang, Y.; Perry, I. B.; Lu, G.; Liu, P.; Buchwald, S. L.
Science, 2016, 353, 144–150. DOI: 10.1126/science.aaf7720

Computational Study of Rh-Catalyzed Carboacylation of Olefins: Ligand-Promoted Rhodacycle Isomerization Enables Regioselective C–C Bond Functionalization of Benzocyclobutenones,” Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P.
J. Am. Chem. Soc., 2015, 137, 8274–8283. DOI: 10.1021/jacs.5b04691