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The intramolecular Rh(I)-catalyzed allenic Pauson–Khand reaction 

(APKR) is a powerful synthetic method for constructing ring-fused 
cyclopentenones. Our group’s interest in the APKR extends back to 1992 
when we submitted original research proposals for applications to academic 
positions. At that time, there were two independent reports of allenes being 
used in the PKR–only Aumann’s demonstrated the feasibility of an 
intermolecular Fe(0)-catalyzed process.2a In 1994, Narasaka demonstrated 
three examples of an intramolecular APKR using allenyl sulfides and an iron 
carbonyl complex.3  In 1995, we reported a successful intramolecular APKR 
reaction of unfunctionalized allenes4 using stoichiometric Mo(CO)6–a transition 
metal complex that had recently been reported by Jeong for the enyne PKR.5  
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Also, in 1995, Narasaka reported trace amounts of a cycloadduct for a simple 
allene-yne using Fe(0)-catalysis,6 and Cazes successfully demonstrated an 
intermolecular APKR using Co2(CO)8 and NMO.7 In July of 2000, an 
undergraduate researcher, Brenden Rickards, working in our lab 
demonstrated a Rh(I)-catalyzed APKR using [Rh(CO)2Cl]2–a catalyst 
previously reported by Narasaka for an enyne PKR.8 This result established 
for the first time that a Rh(I) transition metal catalyst afforded complete 
selectivity for the distal double bond of the allene whereas Mo(CO)6 afforded 
selectivity for the proximal double bond affording a different constitutional 
isomer.  

In 2001, while our group was expanding the scope of  this unprecedented, 
catalyst-controlled double bond selectivity for Mo(0) and Rh(I) on a number 
of alkynyl allenes,9a,b including an APKR approach to the natural product 
guanacastepene A,9c Narasaka published a manuscript describing the scope 
and limitations of [Rh(CO)2Cl]2-catalyzed enyne PKR where he also described 
the reaction of a single alkynyl allene showing that the reaction occurred with 
the distal double bond.10 In early 2002, Dr. Hongfeng Chen, a postdoctoral 
fellow in our group, demonstrated that unfunctionalized allenes could be used 
in the APKR to form [5,7]-ring systems by exploiting the Rh(I) catalyst 
controlled double bond selectivity,9b and Mukai reported that allenyl sulfones 
could also be employed to prepare [5,7]-ring systems.11 This independent co-
discovery of a metal catalyzed control of double bond selectivity to form 
seven-membered rings has inspired our group and others in the application 
of this powerful method for synthesizing complex molecular compounds.   

This discussion addendum informs on a few recent advances made 
regarding expansion of the scope of the APKR and its application to target-
oriented synthesis. We have divided this addendum into the following 
topics: Asymmetric Allenic Pauson–Khand Reaction; Transfer of Allene Axial 
Chirality in APKR; Rh(I)-Catalyzed APKR Double Bond Selectivity, 
Mechanism, and Reaction Optimization; and APKR Approach to Natural 
Products and Other Bioactive Compounds.  
 

Asymmetric Allenic Pauson–Khand Reaction 
 

Burrows, Jesikiewicz, Liu, and Brummond recently showed that through 
a combination of experiment and theory racemic allene-yne 1 could be 
transformed to bicyclo[5.3.0]decadienone 2 in 79% yield with an 82:18 
enantiomeric ratio (er) using a chiral non-racemic Rh(I) catalyst (Scheme 
1A).12 A transformation made possible through rapid scrambling of the axial 
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chirality of the allenyl acetate under the reaction conditions and selective 
reaction of one enantiomer. This represents the first Rh(I)-catalyzed 
asymmetric carbocyclization reaction of this type outside of a 1,6-enyne. In 
contrast to more traditional catalyst design strategies involving high 
throughput experimentation, high enantioselectivity was realized after 
testing only seven different chiral catalysts using wet-lab experimentation–
representing an immense savings in resources. The key to our success was a 
deep mechanistic understanding where experiment and computation 
informed selection of the next catalyst. For example, activation barriers for 
the enantioselectivity-determining oxidative cyclization step were computed 
to reveal the origins of catalyst reactivity (DG‡) and selectivity (DDG‡) and 
experiments in a flask were performed to test catalyst efficiency (yield) and 
stereo-directing ability (er) (Scheme 1B). This mechanistically complex 
process involving a dynamic kinetic asymmetric transformation (DyKAT) is 
a powerful demonstration of catalyst design made possible through the tight 
integration of experiment and computation. 

 

 
 

Scheme 1. DyKAT process realized in the asymmetric APKR 
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furanyl tethered allene-ynes to access the core ring system present in the 
guaianolide natural product thapsigargin (Tg).13 The APKR of several furanyl 
tethered allene-ynes 4 afforded products 5 in good yields with high 
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enantioselectivities when using the chiral monodentate ligand S-(3) (Scheme 
2). Interestingly, while several allenyl carboxy groups were examined (Series B), only 
allenyl chloroacetates afforded products in upwards of 98% ee (Series A)! The group 
on the terminus of the alkyne played a key factor in the yield and 
enantioselectivity of the APKR with a terminal alkyne affording product in 
32% yield and 54% ee and a phenyl alkyne affording product in 46% yield 
and 98% ee. The methyl-substituted alkyne with an allenyl chloroacetate 
afforded product in 57% yield and 94% ee. DFT calculations of this reaction 
show a favorable π-π interaction between the furanyl ring and 
phosphoramidite ligand that lowers the energy of the transition state leading 
to the major product. The transition state leading to the minor enantiomer, 
lacks this favorable π-π interaction.13 

 
Scheme 2. APKR of furan-tethered allene-yne affording the Tg core 

 
Transfer of Allene Axial Chirality in the APKR 
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R= TMS) and 10c (X = O, R= TMS) provided the products 11b and 11c in good 
yield but with 50% and 22% ee, respectively. Reaction monitoring using chiral 
HPLC analysis provided strong evidence for scrambling of the axial chirality 
of the allenyl precursor and not epimerization of the APKR product. 
Scrambling of the axial chirality of the allene is postulated to involve an 
intramolecular nucleophilic attack of the rhodium complexed allene by the 
heteroatom in the tether (Scheme 3C).14 

 

 
Scheme 3. Transfer of allene axial chirality in the Rh(I)-catalyzed APKR 

to access bicyclo[5.3.0]decadienones enantioselectively 
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Scheme 4. Transfer of allene axial chirality in the Rh(I)-catalyzed APKR 

to access chiral non-racemic bicyclo[4.3.0]nonadienones 
 

Rh(I)-Catalyzed APKR Double Bond Selectivity, Mechanism, and 
Reaction Optimization 

 
Rhodium and molybdenum are the most used transition metals for 

catalyzing the intramolecular APKR with each showing a different reactivity 
preference towards the double bonds of the allene. For example, rhodium 
biscarbonyl chloride dimer [Rh(CO)2Cl]2 reacts preferentially with the distal 
double bond of the allenes 14 and 17 to afford products 15 and 18, while 
molybdenum hexacarbonyl [Mo(CO)6] reacts with the proximal double bond 
to afford 16 and 19. This transition metal controlled selectivity has been used 
to form either α-methylene cyclopentenone or 4-alkylidene cyclopentenone 
products (Scheme  5).9a,b  

 

 
 

Scheme 5. Catalyst-controlled double bond selectivity for APKR 
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The preferential reactivity of one double bond over the other has been 
described using Density Functional Theory (DFT) where calculations show 
the metal geometry in the oxidative cyclization (OxCycl) transition state–the rate 
determining step in the reaction energy profile–as a key control element.16 For 
example, the rhodium catalyzed reaction shows an early transition state (TS) 
with all low energy TS structures for the OxCycl step having a four-
coordinate rhodium metal complexed to the distal allene double bond (TS-1) 
and adopting a slightly distorted square planar geometry to afford 
metallocycle 22 (Scheme 6A). Whereas all low energy TS structures for the 
OxCycl step for the five-coordinate molybdenum having a trigonal 
bipyramidal geometry show the proximal double bond as complexing to the 
axial position due to conformational constraints (not shown) The CO 
insertion step was found to be the rate-determining step for molybdenum; 
however, the free energy of this step was lower than that for the OxCycl of 
the metal to the distal double bond of the allene (not shown).16  

 

 
Scheme 6. DFT studies on the oxidative cyclization step of the Rh(I)-

catalyzed APKR and asymmetric APKR 
 
The computed reaction energy profile for the asymmetric Rh(I)-catalyzed 

APKR shows the oxidative cyclization step as stereo- but not rate-
determining (Scheme 6B).12 Complexation of the allene-yne to the resting 
state of the catalyst 24 occurs with the loss of two CO’s to afford 25 having a 
square planar geometry which is 7.7 kcal/mol lower in energy than the 
square-based pyramidal complex 26, which results from the loss of one CO 

0.0

-15.6 Rh

Me
OC

OC

16.8

Rh
OC •

OC

Rh
OC

OC
 TS-1

Rh geometry–slightly 
distorted square planar

20

3.1 3.0

22.3

22

Rh
OC

OC
 TS-2

Rh
OC

OC
23

Rh
OC

OC
21

•
20

21

 TS-2

 TS-1

23

22

ΔGsol
(ΔHsol)

kcal/mol

5.5
(8.2)

21.9
(22.6)

Rh
CO

P

OC

OC

P = (S)-MonoPhos-alkene (S)-3

0.0
(0.0)

Rh
OC

P
AcO

TMS

MeH

13.2
(3.4)

17.6
(6.9)

Rh
OC

OC

TMS

Me
•

H
AcO

P

Rh
OC

OC
AcO

TMS

MeH

P

-13.1
(-25.3)

2CO

CO

Rh
OC

P

TMS

Me
•

HAcO
Me

Rh

TMS
OC

OC
HAcO

24

26

25

TS-4

TS-3

2725
27

TS-3

TS-4

24

26

P

A Transition States for Oxidative Cyclization of APKR B Transition States for Oxidative Cyclization of Asymmetric APKR



 

Org. Synth. 2023, 100, 29–47    DOI: 10.15227/orgsyn.100.0029 36 

(Scheme 6B). Nonetheless, the OxCycl step for the five-coordinate TS-3 has a 
lower calculated activation barrier than the four-coordinate TS-4 by 4.3 
kcal/mol. Stabilization of TS-3 (18-electron) over TS-4 (16-electron) by the 
additional CO ligand was attributed to the acetoxy group on the allene. 
Interestingly, DFT predicts that both reaction pathways afford the same 
enantiomeric product. Whereas, in the Rh(I)-catalyzed PKR of enynes, the 
reaction pathways involving the four- and five-coordinate complexes afford 
different enantiomeric products.17    

During application of the APKR involving an early-stage installation of 
C4 and C10 methyl groups present in the 6,12-guaianolides, a byproduct was 
formed in substantial quantities for methyl substituted allenes and alkynes 
as well as terminal alkynes. 1H NMR spectroscopy and ESI mass 
spectrometry analysis supported a byproduct resulting from a dimerization 
of the allene-yne precursor 28. Performing the reaction by dropwise addition 
of allene-ynes 28 to the Rh(I) catalyst under Conditions B (0.01 M) gave an 
80% yield of 29, much higher than Conditions A which afforded 29 in 32% 
yield. High yields were afforded for nearly all substrates examined when 
using these modified conditions (Scheme 7).18 These same conditions were 
used for APKR protocol published in Organic Syntheses on a 6-g scale in 88% 
yield using 1 mol% of [Rh(CO)2Cl]2.19  

 

Scheme 7. Optimized conditions for Rh(I)-catalyzed APKR 
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APKR Approach to Natural Products and Other Bioactive 
Compounds 

 
The APKR is a key step in the synthesis of the core structure of several 

natural products and other bioactive compounds. Jackson and Brummond 
demonstrated that the Rh(I)-catalyzed APKR of lactam tethered allene-ynes 
32 enabled rapid access to several guaianolide analogs 33, which are 
equipped with an electronically tunable covalent reactive group, an α-
methylene−γ-lactam (Scheme 8A).20 These analogs were designed for tunable 
thiol reactivity thus enabling an understanding of structure activity 
relationships for bioactive compounds with an α-methylene−γ-lactone that 
are otherwise too reactive. Reaction of compound 33 with excess cysteamine 
showed thiol addition with half-lives ranging from seconds to days 
depending upon the electronics of the R2 group.     

 

 
Scheme 8. APKR approach to guaianolide analogs with tunable thiol 

reactivity and bioactivity 
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the trans-annulated stereoisomer is due to release of ring strain in the thiol-
Michael addition transition state.  These studies support the α-methylene-γ-
lactam as a novel covalent reactive group and its value in the rational design 
of inhibitors by having thiol reactivity within a range of the widely used and 
therapeutically proven acrylamide.21,22 

In 2022, the Li group reported the first use of APKR of an 
unfunctionalized allene 38 to form an eight-membered-ring to achieve the 
asymmetric total synthesis of hypoestin A, albolic acid, and ceroplastol II 
from the common intermediate 40 (Scheme 9).23,24 Several rhodium catalysts 
and additives were screened identifying the standard APKR conditions 
([(Rh(CO)2Cl]2, toluene, CO balloon, 110 °C) as optimal for achieving the 
5,8,5-ring system 39 in 56% yield. The APKR could be performed reliably on 
a 2-g scale and the generality of the method was demonstrated on ten 
additional substrates with various functionality affording 5,8,5-ring systems 
in 40–86% yields.  

 

 
Scheme 9. APKR approach to a 5,8,5-ring system 
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Scheme 10. APKR approach to 5,6-ring system–Total synthesis of 

streptazone A and abikoviromycin 
 
The Li group used an APKR of benzyloxyallene-yne 43 to construct the 

5,7,6,5- tetracyclic ring system 44 in the total synthesis of sterically compact 
bufospirostenin A (Scheme 11).26 Extensive experimentation revealed that the 
ligand additive 1,3-bis(diphenylphosphino)propane (dppp) and the syringe 
pump addition of allene-yne to the rhodium catalyst afforded the desired 
product in 85% yield as a 2:1 mixture of diastereomers separable by column 
chromatography on large scale (>20 g). 

 
Scheme 11. APKR approach to 5,7,6,5-ring system 
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core represented in several natural products including brevifoliol and 
radianspene C (Scheme 12).27 

 
Scheme 12. Rapid assembly of 6,7,5-ring system of a terpenoid core 
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Scheme 13. Cyclocarbonylation of ene-allene  
 

HO

HO
HO O

radianspene Cbrevifoliol

HO

OHHO
H

OAc
OAcBzO

•

O

10 mol% 
[Rh(CO)2Cl]2 
CO (1 atm)

 p-xylene, 110 °C CNNC

NC
CN

46, 50% yield
1.5: 1 dr

H

AcO

AcO

H O
O

O

O

H
H

45

•
O

O

O

O

O
O

H
O

H

O
O

O
H

O
H

O

H

O

perforanoid A

5 mol% 
[Rh(CO)2Cl]2 
CO (1 atm)

 toluene, 120 °C

48, 85% yield47



 

Org. Synth. 2023, 100, 29–47    DOI: 10.15227/orgsyn.100.0029 41 

Baran and coworkers have demonstrated the APKR of allene-yne 49 to 
prepare 50 which was used in the total syntheses of ingenol and phorbol 
(Scheme 14).29, 30 Protection of the diol as silyl ethers, high temperature, and 
high dilution conditions were essential to this high yielding APKR on gram 
scale.   

 

 
Scheme 14. APKR approach to a 5,7-ring system 

 
Ardisson and coworkers have shown that a Rh(I)-catalyzed APKR 

performed using racemic allene-yne 51 affords the 5,7-ring system of the 
tricyclic 52 in 71% yield in an approach to the natural product thapsigargin 
(Scheme 15).31 The structure of 52 was confirmed by X-ray crystallography. 
The APKR conditions were modified to include 1,3-
bis(diphenylphosphino)propane (dppp). These conditions have previously 
been demonstrated to give a dramatic yield enhancement for some allene-
ynes, including: allenyl carbamates, and benzyl and para-methoxy benzyl 
ethers. Interestingly, the catalyst and ligand were added successively to the 
allene-yne whereas most protocols involve the addition of the allene-yne to 
the Rh(I)-catalyst.32, 33  

OH
OH

HO

H

(+)-phorbol

HO HO

H

(+)-ingenol

OH

O

TMSO
H

O OTBS

TMSO

H

OH

• OTBS

10 mol% 
[Rh(CO)2Cl]2 
CO (1 atm)

 p-xylene (0.005 M)
140 °C

50 72% yield

50
13-steps 8-steps

OH
O HO

H

49



 

Org. Synth. 2023, 100, 29–47    DOI: 10.15227/orgsyn.100.0029 42 

 
 

Scheme 15. APKR approach to a 5,7-ring system of thapsigargin 
 
In summary, the APKR has played an important role in target-oriented 

organic synthesis. And, amongst different metals including Fe, Mo, and Co 
being used as the catalyst in APKR, Rh is the most prominent in the recent 
advances in this area. Finally, for additional insight and information on the 
APKR several reviews have been published.34 
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