Department of Chemistry



David Waldeck



Chevron Science Center, 219 Parkman Avenue

Pittsburgh, PA 15260

My Website >

Research Overview


Chemistry and Dynamics in the Condensed Phase

Professor Waldeck's research program uses methods of spectroscopy, electrochemistry, and microscopy to investigate primary processes in the condensed phase, which includes liquids, solids and liquid/solid interfaces. Current themes of his research are the fundamental understanding of the chiral induced spin selectivity (CISS) effect and its role in electron transfer reactions and electron transport in supramolecular structures.

Solution Studies

His research program studies electron transfer processes experimentally in order to directly evaluate and improve theoretical models. Currently, his group is investigating how the electron transfer in semiconductor nanoparticle assemblies depends on energetic, geometric, and electrostatic features of the assemblies.  Other efforts are studying electron transfer between semiconductor nanoparticles and conjugated polymers and how it depends on the energetic, electrostatic, and chirality of the constituents. A major goal of these studies is to understand how the structural and energetic hierarchy of nanometer scale assemblies can be manipulated to control electron transfer.

Interfacial Charge Transfer

This effort probes charge transfer through monolayers and individual molecules by electrochemical and/or conducting probe methods. Previous work has used electrochemical studies to elucidate how the molecular properties (e.g., electronic character, chirality, and the nature of the molecule-electrode linkage) affect the observed tunneling barriers and molecular conductivities.  Current work is investigating how to manipulate the electronic and chemical nature of monolayer films to enhance the electronic interaction between a redox moiety and the electrode, with a particular focus on better understanding how to ‘wire’ biomolecules (proteins and oligonucleotides) to electrodes.

Chiral Induced Spin Selectivity (CISS)

As electrons move through a chiral molecule they generate an effective magnetic field, B, that acts on the electrons’ intrinsic magnetic moment, and this creates a preference for the transmission of one electron spin direction over the other.   Waldeck’s group is exploring fundamental features of the CISS effect and examining its application for enantioselectivity in chemical reactions and chemical separations.

Teaching Overview

Professor Waldeck’s teaching interests are in physical chemistry and he has authored the textbook Principles of Physical Chemistry (Wiley, 2009).


  • ISE Bioelectrochemistry Prize, 2018
  • American Association for the Advancement of Science Fellow, 2017
  • ACS-WCC Award for Encouraging Women in Chemistry 2016
  • ACS Pittsburgh Award 2014
  • Fellow of the American Physical Society, 2005
  • Belkin Visiting Professor, Weizmann Institute 1998 - 1999
  • Chancellor's Distinguished Research Award, University of Pittsburgh, 1994


“The Electron Spin as a Chiral Reagent ,” T. S. Metzger, S. Mishra, B. P. Bloom, N. Goren, A. Neubauer, G. Shmul, J. Wei, S. Yochelis, F. Tassinari, C. Fontanesi, D. H. Waldeck, Y. Paltiel, and R. Naaman   Angew. Chemie Int. Ed. 2019, 58, 2-8
“Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions,” R. Naaman , D. H. Waldeck, and Y. Paltiel   Appl. Phys. Lett. 2019, 115, 133701
“Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules ,” J. M. Abendroth, D. M. Stemer, B.P. Bloom, P. Roy, R.Naaman, D. H. Waldeck, P. S. Weiss, and P.Chandra Mondal ACS Nano 2019, 13, 4928-4946
“Chirality and Its Role in the Electronic Properties of Peptides: Spin Filtering and Spin Polarization ,” R. Naaman, C. Fontanesi, and D. H. Waldeck Current Opinion in Electrochemistry 2019, 14, 138-142
“Chiral Molecules and the Electron Spin ,” R. Naaman, Y. Paltiel, and D. H. Waldeck  Nature Reviews 2019, 3, 250-260
“Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes ,” K. B. Ghosh, W. Zhang, F. Tassinari, Y. Mastai, O. Lidor-Shalev, R. Naaman, P. Möllers, D. Nürenberg, H. Zacharias, J. Wei, E. Wierzbinski, and D. H. Waldeck J. Phys. Chem. C 2019, 123, 3024-3031
“Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules ,” G. Koplovitz, G. Leitus, S. Ghosh, B. P. Bloom, S. Yochelis, D. Rotem, F. Vischio, M. Striccoli, E. Fanizza, R. Naaman, D. H. Waldeck, D. Porath and Y. Paltiel Small 2019, 15, 1804557
“What Is Beyond Charge Trapping in Semiconductor Nanoparticle Sensitized Dopant Photoluminescence? ,” P. Manna, G. Debnath, D. H. Waldeck, and P. Mukherjee J. Phys. Chem. Lett 2018, 9, 6191-6197
“Directing Charge Transfer in Quantum Dot Assemblies ,” B. Bloom, R. Liu, P. Zhang, S. Ghosh, R. Naaman, D. Beratan, and D. H. Waldeck  Accounts of Chemical Research 2018, 51, 2565-2573
“Chirality and Spin: A Different Perspective on Enantioselective Interactions ,” R. Naaman, Y. Paltiel, and D. H. Waldeck  Chimia 2018, 72, 94-398
“Spin-Dependent Processes Measured without a Permanent Magnet ,” C. Fontanesi, E. Capua, Y. Paltiel, D.H. Waldeck, and R. Naaman  Advanced Materials 2018, 1707390-6
“Imprinting Chirality onto the Electronic States of Colloidal Perovskite Nanoplatelets ,” Z. N. Georgieva, B. P. Bloom, S. Ghosh, and D. H. Waldeck Advanced Materials 2018, 1800097; DOI: 10.1002/adma.201800097.
“The Molecular Conductance of Stitched Nucleic Acid Duplexes ,” E. Beall, A. Sargun, S. Ulku, Y. Bae, E. Wierzbinski, C. Clever, D. H. Waldeck, and C. Achim J. Phys. Chem. C 2018, 122, 7533-7540
“Improving Solar Cell Performance Using Quantum Dot Triad Charge-separation Engines ,” R. Liu, B. P. Bloom, D. H. Waldeck, P. Zhang, and D. N. Beratan J. Phys Chem. C. 2018, 122, 5924-5934
“Antioxidant Capacity of Nitrogen, Sulfur Co-doped Carbon Nanodots,” W. Zhang, J. Chavez, Z. Zeng, B. Bloom, A. Sheardy, Z. Ji, Z. Yin, D. Waldeck, Z. Jia, Z. Zhenquan, and J. Wei ACS Applied Nano Materials 2018, 1, 2699-2708
“The Chiral Induced Spin Selectivity (CISS) Effect.,” Naaman, R. and Waldeck D. H. Spin in Organics 2018, 4, 235-270
“Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics,” Varade, V., Markus, T., Vankayala, K., Friedman, N., Sheves, M., Waldeck, D. H., and Naaman, R. PCCP 2018, 20, 1091-1097
“Charge and spin transport through nucleic acids,” Beratan, D. N., Naaman, R. , and Waldeck, D. H. Current Opinion in Electrochemistry 2017, 4, 175-181
“Spin in quantum biology,” Naaman, R. and Waldeck, D. Inference 2017, 3
“A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic anpplications and energy gap investigation,” Zhen, Z., Zhang, W. D., Arvapalli, D. M., Bloom, B., Sheardy, A., Mabe, T., Liu, Y. Y., Ji, Z, W., Chevva, H., Waldeck, D. H., and Wei, J. J. PCCP 2017, 19, 20101-20109
“Chirality control of electron transfer in quantum dot assemblies,” Bloom, B., Graff, B. M., Ghosh, S., Beratan, D. N., and Waldeck, D. H. J. Am. Chem. Soc. 2017, 139, 9038-9043
“Controlling the electron-transfer kinetics of quantum-dot assemblies,” Liu, R., Bloom, B., Waldeck, D. H., Zhang, P., and Beratan, D. N. J. Phys. Chem. C 2017, 121, 14401-14412
“Effects of the backbone and chemical linker on the molecular conductance of nucleic acid duplexes,” Beall, E., Ulku, S., Liu, C., Wierzbinski, E., Zhang Y., Bae, Y., Zhang, P., Achim, C., Beratan, D. N., and Waldeck, D. H. J. Am. Chem. Soc. 2017, 139, 6726-6735
“Chirality-induced spin polarization places symmetry constraints on biomolecular interactions,” Kumar, A., Capua, E., Kesharwani, M. K., Martin, J. M. L., Sitbon, E., Waldeck, D. H., and Naaman, R. PNAS 2017, 114, 2474-2478
“A new approach towards spinitronics - Spintronics with no magnets,” Michaeli, K., Varade, V., Naaman, R., and Waldeck, D. H. J. Phys.: Condens. Matter 2016, 29, 103002 1-8
“Spin-dependent transport through chiral molecules studied by spin-dependent electrochemistry,” Mondal, P. C., Fontanesi, C., Waldeck, D. H., and Naaman, R. Accts. Chem. Res. 2016, 49, 2560-2568
“The electron's spin and molecular chirality - How are they related and how do they affect life processes?,” Michaeli, K., Kantor-Uriel, N., Naaman, R., and Waldeck, D. H. Chem. Soc. Rev. 2016, 45, 6478-6487
“Hot holes break the speed limit,” Beratan, D. N. and Waldeck, D. H. Nature Chemistry 2016, 8, 992-993
“ Identifying the Correct Host - Guest Combination to Sensitize Trivalent Lanthanide (Guest) Luminescence: Titanium Dioxide Nanoparticles as a Model Host System,” Chakraborty, A.,  Debnath, G. H., Saha, N. R., Chattopadhyay, D., Waldeck, D. H., and Mukherjee, P. J. Phys. Chem. C 2016, 120, 23870-23882
“Electron Transfer in Nanoparticle Dyads Assembled on Colloidal Template,” Graff, B. M., Bloom, B. P., Wierzbinski, E., and Waldeck, D. H. J. Am. Chem. Soc. 2016, 138, 13260-13270
“Through Solvent Tunneling in Donor-Bridge-Acceptor Molecules Containing a Molecular Cleft,” Graff, B. M., Lamont, D. N., Parker, M. F. L., Bloom, B. P., Schafmeister, C. E., and Waldeck, D. H. J. Phys. Chem. A 2016, 120, 6004-6013
“A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device,”  Zeng, Z., Mendis, M. N., Waldeck, D. H., Wei, J. RSC Advances 2016, 6, 17196 – 17203
“Eliminating Fermi-Level Pinning in PbS Quantum Dots using an Alumina Interfacial Layer ,” Bloom, B., Mendis, M. N., Wierzbinski, E., and Waldeck, D. H. Journal of Materials Chemistry C 2016, 4, 704 – 712
“Evidence for Enhanced Electron Transfer by Multiple Contacts between Self-Assembled Organic Monolayers and Semiconductor Nanoparticles,” Kantor-Uriel, N., Roy, P., Saris, S., Kiran, V., Waldeck, D. H., and Naaman, R. J. Phys. Chem. C 2015, 119, 15839–15845
“A Scanning Tunneling Microscope Break Junction Method with Continuous Bias Modulation ,” Beall, E., Yin, X., Waldeck, D. H., and Wierzbinski, E. Nanoscale 2015, 7, 14965-14973
“Electron Transfer: Basic Theory, Experiments, and Computatiaonal Methods ,” Yin, X. and Waldeck, D. H. Adv. Science Engineering and Medicine 2015, 7, 1093–1111.
“Electron Transfer: Basic Theory, Experiments, and Computational Methods,” Yin, X. and Waldeck, D. H. Advanced Science Focus 2015, invited review/submitted
“Magnetic Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry,” Mondal, P. C., Fontanesi, C., Waldeck, D. H., and Naaman, R. ACS Nano 2015, 9, 3377-3384
“Spintronics and Chirality: Spin Selectivity in Electron Transport through Chiral Molecules,” Naaman, R. and Waldeck, D. H. Ann Rev Phys Chem. 2015, 66, 263-281
“Spin Filtering in Electron Transport through Chiral Oligopeptides,” Kettner, M., Gohler, B., Zacharias, H., Mishra, D., Kiran, V., Naaman, R., Waldeck, D. H., Sek, S., Pawlowski, J., and Juhaniewicz, J. J. Phys. Chem. C. 2015, 119, 14542-14547
“Chiral Supramolecular Structures as Spin Filters in Suparamolecular Materials for Opto-Electronics,” Naaman, R. and Waldeck, D. H. N. Koch ed. RSC Smart Materials 2015, 12, 203-225
“A Study of Localised Surface Plasmon Resonance Nanoslit Array and Applications for Chip-based Protein Detection,” Wei, J., Kofke, M., Singhal, S., and Waldeck, D. H. JSM Nanotechnology & Nanomedicine 2014, 2, 1024
“FD 174: Breaking the simple proportionality between molecular conductances and charge transfer rates,” Venkatramani, R., Wierzbinski, E., Waldeck, D. H., and Beratan, D. N. Faraday Discussions 2014, 174, 57-78
“Luminescence Quenching by Photoinduced Charge Transfer between Metal Complexes in Peptide Nucleic Acids,” Yin, X., Kong, J., DeLeon, A., Li, YL, Ma, Z. J., Wierzbinski, E., Achim, C., and Waldeck, D. H. J. Phys Chem. B 2014, 118, 9037-9045
“Depleted Bulk Heterojunctions in Thermally Annealed PbS Quantum Dot Solar Cells,” Ding, B., Wang, Y., Huang, P. S., Waldeck, D. H., Lee, J.-K. J. Phys. Chem. C 2014, 118, 14749-14758
“Synergistic Effect of Surface Plasmonic Particles in PbS/TiO2 Heterojunction Solar Cells,” Ding, B., Gao, T., Wang, Y., Waldeck, D. H., Leu, P., Lee, J.-K. Solar Energy Materials and Solar Cells 2014, 128, 386-393
“A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime,” Yin, X., Wierzbinski, E., Lu, H., Bezer, S., de Leon, A. R., Davis, K. L., Achim, C., and Waldeck, D. H. J. Phys. Chem. A 2014, 118, 7579-7589
“Driving Charge Separation for Hybrid Solar Cells: Photo-induced Hole Transfer in Conjugated Copolymer and Semiconductor Nanoparticle Assemblies,” Wang, Y., Liu, K., Mukherjee, P., Hines, D. A., Santra, P., Shen, H. Y., Kamat, P., and Waldeck*, D. H. Phys. Chem. Chem. Phys. 2014, 16, 5066-5070
“Chemical and Electrochemical Manipulation of Mechanical Properties in Stimuli-Responsive Copper-Cross-Linked Hydrogels,” Harris, R. D., Auletta, J. T., Motlagh, S. A. M., Lawless, M. J., Perri, N. M., Saxena, S., Weiland, L. M., Waldeck, D. H., Clark, W. W., and Meyer, T. Y ACS Macro Lett. 2013, 2, 1095-1099
“Enhanced Sensitivity of Delocalized Plasmonic Nanostruictures,” Mendis, M. N., Mandal, H. S., and Waldeck, D. H. J. Phys. Chem. C 2013, 117, 25693-25703
“Ligand Induced Changes in the Characteristic Size Dependent Electronic Energies of CdSe Nanoparticles,” Bloom, B. P., Zhao, L.-B., Wang, Y., Waldeck, D. H., Beratan, D. N., Zhang, P., and Liu, R. J. Phys. Chem. C. 2013, 22401−22411
“Electron transfer with azurin at Au–SAM junctions in contact with a protic ionic melt: impact of glassy dynamics,” Khoshtariya, Dimitri E., Dolidze, Tina D., Tretyakova, Tatyana, Waldeck, David H., and van Eldik, Rudi PCCP 2013, 15, 16515-16526
“A Postsynthetic Modification of II–VI Semiconductor Nanoparticles to Create Tb3+ and Eu3+ Luminophores,” Mukherjee, Prasun, Sloan, Robin F., Shade, Chad M., Waldeck, David H., and Petoud, Stéphane J. Phys. Chem. C 2013, 117, 14451-14460
“The single-molecule conductance and electrochemical electron-transfer rate are related by a power law,” Wierzbinski, E., Venkatramani, R., Davis, K.L., Bezer, S., Kong, J., Xing, Y., Borguet, E., Achim, C., Beratan, D.N., and Waldeck, D. H. ACS Nano 2013, 7, 5391-5401
“The Effect of Oxygen Heteroatoms on the Single Molecule Conductance of Saturated Chains,” Wierzbinski, E., Yin, X., Werling, K., and Waldeck, D. H. J. Phys. Chem. B 2013, 117, 4431-4441